February 24th, $2020 \quad$ Name (Please Print)

Computer Science II - Midterm - Semester II 19/20 Page 1 of 2.

Your Signature

\qquad
1.(a) (4 points) Use the 64-bit long real format to find the decimal equivalent of the following floating-point machine number

1100000010101001001100
1.(b) (8 points) using the below R -code, we are interested in computing the

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

to an error of at most $\frac{1}{2} \times 10^{-4}$.
> Approxintegrate $=$ function(f,a,b,n)\{
$+\mathrm{m}=\mathrm{n}+1$
$+\mathrm{h}=(\mathrm{b}-\mathrm{a}) /(\mathrm{m}-1)$
$+x=\operatorname{seq}(a, b, b y=h)$
$+y=f(x)$
$+I=h *(0.5 *(y[1])+\operatorname{sum}(y[2: m-1])+0.5 *(y[m]))$

+ I\}

With justification write R-commands which uses the above code to give you desired answer.
1.(c) (8 points) Explain the below R-code (in each case describing what the command intends and the resulting output)
> .Machine\$double.xmin
[1] $2.225074 \mathrm{e}-308$
> .Machine\$double.xmin/2
[1] $1.112537 \mathrm{e}-308$

```
> bitsOfPrecision = function(x)max(which( x != x*(1+2^-(1:60))))
> bitsOfPrecision(.Machine$double.xmin/2)
```


Your Signature

\qquad
2. (a) Let $f, g: \mathbb{N} \rightarrow(0, \infty)$
(i) (2 points) Define what it means to say $f(n)=o(g(n))$.
(ii) (8 points) Suppose $f(n)=\frac{4^{n} n^{5}}{n!}$ and $g(n)=n^{-0.9 n}$. Is $f(n)=o(g(n))$?
2.(b) One of the two software packages, R or MATLAB should be chosen to process data collections. Average processing time of the package R for n records is given by $R(n)=0.001 n$ milliseconds and the average processing time of the package MATLAB for n records is given by $M(n)=500 \sqrt{n}$ milliseconds.
(i) (2 points) Which package has better performance (w.r.t processing times) in the Big-O sense?
(ii) (3 points) Suppose the data collections each contain up to 10^{9} records. If you wish to use the package that performs better then which one would you choose ?
3. (10 points) Suppose $y_{0}=0, y_{1}=1$ and

$$
y_{n+1}=y_{n}+\frac{\left(2-e^{y_{n}}\right)\left(y_{n}-y_{n+1}\right)}{e^{y_{n}}-e^{y_{n+1}}}
$$

for $n \geq 2$. Decide, with appropriate justification, if y_{n} converges to an $y \in \mathbb{R}$. If it does then find y and the order of convergence.
4. Consider $f:[1,2] \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{1}{x}
$$

for $x \in[1,2]$. Let P be the polynomial of degree less than or equal to n that interpolates the points $\left\{\left(x_{i}, f\left(x_{i}\right): 0 \leq i \leq n\right\}\right.$. Let $e:[1,2] \rightarrow \mathbb{R}$ be given by

$$
e(x)=f(x)-p(x)
$$

for $x \in[1,2]$.
(a) (5 points) Show that $|e(x)| \leq 1$ for all $x \in[1,2]$
(b) (10 points) With justification show that there exists a choice of $n, x_{0}, x_{1}, \ldots, x_{n}$ such that $|e(x)|<10^{-3}$ for all $x \in[1,2]$?

